WG1

NECTAR for highly hydrolysable (HHC) and/or low-valence state (LVC) cations

Equilibrium analysis of systems containing highly hydrolysable or low-valence state cations is always very challenging.
Typical bottlenecks, inadequate for the interpretation of phenomena at specific conditions, are:
  • Difficult experimental set-up (e.g., formation of sparingly soluble species for HHC, oxidation for LVC in the presence of traces of dioxygen or other oxidants, etc.).
  • Lack of reliable literature data (e.g., unreliable speciation models, missing and/or questionable thermodynamic parameters, literature discrepancies, etc.).
  • Narrow ranges of experimental conditions explored to date (e.g., temperature, ionic media and ionic strengths, presence of competing ligands, etc.).

Leaders

Tasks

Defining precise strategies for the study in solution of systems containing HHC (e.g., Zr(IV), lanthanoids, actinoids, oxoions).
Defining procedures and experimental approaches for the study of LVC (e.g., Fe(II), Sn(II), Cu(I)), especially those spectroscopically silent (e.g. Cu(I)).
Providing protocols for the study of the speciation of HHC and LVC under conditions of interest for biological, environmental and technologically/industrial applications.
Providing reliable, accurate and comprehensive sets of thermodynamic data of systems containing HHC and LVC in a wide range of different experimental conditions.

Activities

Determination of the hydrolysis constants (and other thermodynamic parameters) of HHC and LVC.
Study of complexes of HHC and LVC: speciation, solubility, kinetics of formation, redox properties.
Structural study and correlation of structural information of the complexes with solution properties.
Modelling of the speciation of the complexes as a function of different conditions (e.g., total cation concentration, pH, pe, ionic strength, system composition, temperature).
Validation of data through interlaboratory and blind round-robin experiments to check reliability and consistency of results obtained.
Dissemination of results, especially those related with experimental procedures.

Outcome

Hydrolysis constants at infinite dilution and T = 298.15 K from the most relevant literature compilations. Click into each element to visualize the constants (in green, recommended values).

1
H
hydrogen
1.008
2
He
helium
4.0026
HHH
3
Li
lithium
6.94
HHH
4
Be
beryllium
9.0122
5
B
boron
10.81
6
C
carbon
12.011
7
N
nidivogen
14.007
8
O
oxygen
15.999
9
F
fluorine
18.998
10
Ne
neon
20.180
HHH
11
Na
sodium
22.990
HHH
12
Mg
magnesium
24.305
13
Al
aluminum
26.982
14
Si
silicon
28.085
15
P
phosphorus
30.974
16
S
sulfur
32.06
17
Cl
chlorine
35.45
18
Ar
argon
39.948
HHH
19
K
potassium
39.098
HHH
20
Ca
calcium
40.078
HHH
21
Sc
scandium
44.956
22
Ti
titanium
47.867
23
V
vanadium
50.942
24
Cr
chromium
51.996
25
Mn
manganese
54.938
26
Fe
iron
55.845
27
Co
cobalt
58.933
28
Ni
nickel
58.693
29
Cu
copper
63.546
30
Zn
zinc
65.38
HHH
31
Ga
gallium
69.723
32
Ge
germanium
72.63
33
As
arsenic
74.922
34
Se
selenium
78.96
35
Br
bromine
79.904
36
Kr
krypton
83.798
37
Rb
rubidium
85.468
HHH
38
Sr
sdivontium
87.62
HHH
39
Y
ytdivium
88.906
40
Zr
zirconium
91.224
HHH
41
Nb
niobium
92.906
42
Mo
molybdenum
95.96
43
Tc
technetium
[97.91]
44
Ru
ruthenium
101.07
45
Rh
rhodium
102.91
46
Pd
palladium
106.42
47
Ag
silver
107.87
48
Cd
cadmium
112.41
HHH
49
In
indium
114.82
50
Sn
tin
118.71
51
Sb
antimony
121.76
52
Te
tellurium
127.60
53
I
iodine
126.90
54
Xe
xenon
131.29
55
Cs
cesium
132.91
HHH
56
Ba
barium
137.33
72
Hf
hafnium
178.49
HHH
73
Ta
tantalum
180.95
74
W
tungsten
183.84
75
Re
rhenium
186.21
76
Os
osmium
190.23
77
Ir
iridium
192.22
78
Pt
platinum
195.08
79
Au
gold
196.97
80
Hg
mercury
200.59
81
Tl
thallium
204.38
Pb
82
Pb
lead
207.2
83
Bi
bismuth
208.98
84
Po
polonium
[208.98]
85
At
astatine
[209.99]
86
Rn
radon
[222.02]
87
Fr
francium
[223.02]
HHH
88
Ra
radium
[226.03]
104
Rf
rutherfordium
[265.12]
105
Db
dubnium
[268.13]
106
Sg
seaborgium
[271.13]
107
Bh
bohrium
[270]
108
Hs
hassium
[277.15]
109
Mt
meitnerium
[276.15]
110
Ds
darmstadtium
[281.16]
111
Rg
roentgenium
[280.16]
112
Cn
copernicium
[285.17]
113
Nh
nihonium
[284.18]
114
Fl
flerovium
[289.19]
115
Mc
moscovium
[288.19]
116
Lv
livermorium
[293]
117
Ts
tennessine
[294]
118
Og
oganesson
[294]
HHH
57
La
lanthanum
138.91
58
Ce
cerium
140.12
59
Pr
praseodymium
140.91
60
Nd
neodymium
144.24
61
Pm
promethium
[144.91]
62
Sm
samarium
150.36
63
Eu
europium
151.96
64
Gd
gadolinium
157.25
65
Tb
terbium
158.93
66
Dy
dysprosium
162.50
67
Ho
holmium
164.93
HHH
68
Er
erbium
167.26
HHH
69
Tm
thulium
168.93
HHH
70
Yb
ytterbium
173.05
71
Lu
lutetium
174.97
89
Ac
actinium
[227.03]
90
Th
thorium
232.04
91
Pa
protactinium
231.04
92
U
uranium
238.03
93
Np
neptunium
[237.05]
94
Pu
plutonium
[244.06]
95
Am
americium
[243.06]
96
Cm
curium
[247.07]
97
Bk
berkelium
[247.07]
98
Cf
californium
[251.08]
99
Es
einsteinium
[252.08]
100
Fm
fermium
[257.10]
101
Md
mendelevium
[258.10]
102
No
nobelium
[259.10]
103
Lr
lawrencium
[262.11]

Members

Prof Giancarla Alberti - Università degli Studi di Pavia
Prof Aculina Aricu - Institute of Chemistry, Academy of Sciences of Moldova
Dr Elvira Bura-Nakić - Ruđer Bošković Instute
Dr David Calin - Universitat de Lleida
Dr Rosalia Maria Cigala - University of Messina
Prof Encarna Companys - Av. Rovisco Pais 1049-001 Lisboa
Dr Montserrat Filella - University of Geneva
Prof Josep Galceran - Universitat de Lleida
Dr Sofia Gama - University of Bialystok, Faculty of Chemistry
Dr Silvia Gentili - University of Parma
Prof Elzbieta Gumienna-Kontecka - University of Wrocław
Prof Petr Hermann - Charles University
Dr Olga Iranzo - Institut des Sciences Moléculaires de Marseille UMR CNRS 7313
Dr Aleksandra Jedynczuk - University of Wroclaw
Ms Lucija Knežević - Ruđer Bošković Institute
Prof Gabriele Lando - University of Messina
Prof Premysl Lubal - Masaryk University
Dr Michel Meyer - CNRS
Prof Demetrio Milea - Università degli Studi di Messina
Dr Andrzej Mular - University of Wroclaw
Dr Raisa Nastas - Institute of Chemistry
Prof Igor Povar - Institute of Chemistry, Academy of Sciences of Moldova
Prof Jaume Puy - Universitat de Lleida
Dr Michaela Rendosova - Pavol Jozef Šafárik University in Košice
Prof Carlos Rey-Castro - Universitat de Lleida
Dr Matteo Savastano - Università degli Studi di Firenze
Dr Vladimir Sladkov - UMR CNRS 8608 - Institut de Physique Nucléaire ORSAY
Prof Matteo Tegoni - University of Parma
Ms Yuliya Toporivska - University of Wrocław
Dr Zuzana Vargova - Pavol Jozef Šafárik University in Košice
Dr Emanuele Zanda - Université Paris-Saclay-CNRS
Dr Veronika Zinovyeva - Institute of Nuclear Physics of Orsay

Copyright © 2021 - All Rights Reserved

Website by NECTAR-COST